A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean
نویسندگان
چکیده
Marine dissolved organic matter (DOM) contains one of the largest exchangeable organic carbon pools on Earth. Riverine input represents an important source of DOM to the oceans, yet much remains to be learned about the fate of the DOM linking terrestrial to oceanic carbon cycles through rivers at the global scale. Here we use ultrahigh-resolution mass spectrometry to identify 184 molecular formulae that are indicators of riverine inputs (referred to as t-Peaks) and to track their distribution in the deep North Atlantic and North Pacific Oceans. The t-Peaks were found to be enriched in the Amazon River, to be highly correlated with known tracers of terrigenous input, and to be observed in all samples from four different rivers characterized by vastly different landscapes and vegetation coverage spanning equatorial (Amazon and Congo), subtropical (Altamaha), and Arctic (Kolyma) regions. Their distribution reveals that terrigenous organic matter is injected into the deep ocean by the global meridional overturning circulation, indicating that a fraction of the terrigenous DOM introduced by rivers contributes to the DOM pool observed in the deep ocean and to the storage of terrigenous organic carbon. This novel molecular approach can be used to further constrain the transfer of DOM from land to sea, especially considering that Fourier transform ion cyclotron resonance mass spectrometer analysis is becoming increasingly frequent in studies characterizing the molecular composition of DOM in lakes, rivers, and the ocean.
منابع مشابه
Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean
Lignin measurements were made on suspended particulate organic matter (POM), total dissolved organic matter (DOM), high-molecular-weight (HMW) DOM, and low-molecular-weight (LMW) DOM in the North Pacific at Station Aloha. Carbon-normalized yields of lignin and dC measurements indicate that while terrigenous organic matter accounts only for B1% of DOM in seawater, submicron POM has a substantial...
متن کاملLimnol. Oceanogr., 44(8), 1999, 2017–2023
High-latitude rivers supply the Arctic Ocean with a disproportionately large share of global riverine discharge and terrigenous dissolved organic matter (DOM). We used the abundance of lignin, a macromolecule unique to vascular plants, and stable carbon isotope ratios (d13C) to trace the high molecular weight fraction of terrigenous DOM in major water masses of the Arctic Ocean. Lignin oxidatio...
متن کاملDegradation of terrigenous dissolved organic carbon in the western Arctic Ocean.
The largest flux of terrigenous organic carbon into the ocean occurs in dissolved form by way of rivers. The fate of this material is enigmatic; there are numerous reports of conservative behavior over continental shelves, but the only knowledge we have about removal is that it occurs on long unknown time scales in the deep ocean. To investigate the removal process, we evaluated terrigenous dis...
متن کاملTerrigenous dissolved organic matter along an estuarine gradient and its ̄ux to the coastal ocean
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultra®ltration into 1±30 kDa (HDOM) and 30 kDa±0.2 mm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH...
متن کاملTerrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic
[1] Surface waters of the Arctic Ocean have the highest concentrations of dissolved organic carbon (DOC) and terrigenous dissolved organic matter (DOM) of all ocean basins. Concentrations of dissolved lignin phenols in polar surface waters are 7-fold to 16-fold higher than those in the Atlantic and Pacific oceans, and stable carbon isotopic compositions of DOM are depleted in C by 1–2% relative...
متن کامل